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Periodic processes of the formation of a new phase are investigated in a meta- 
stable medium for the case of crystallization from supersaturated solutions when 
phase inclusions grow with fluctuating rates depending on their sizes. 

Basic ideas about self-oscillating regimes of the phase transformation in metastable media 
under the dominating role of the fluctuating mechanism of a crystallization nucleus are de- 
veloped in [1-4]. Periodic regimes of volumetric crystal formation and boiling with explo- 
sions which arise due to the instability of stationary regimes are governed by a strongly non- 
linear dependence of the nucleation frequency on the degree of supersaturation, supercooling, 
or superheating with respect to the boundary of a metastable zone corresponding to the thermo- 
dynamic phase equilibrium. The data on oscillations of integral characteristics of the dis- 
perse phase are in good agreement with the results of both laboratory [5-7] and industrial 
experiments [2-3]. It is shown that a significant intensification of the process can be 
achieved through the realization of the volumetric crystallization in self-oscillating regimes 
[2-4]. In [8], the theory is extended to cases with fluctuations in the growth of crystals 
playing a significant role, i.e., when there exists the following relation for the complete 
rate 

dr 
- ~ (r, t) + V i D ~ .  

dt 

However, in [8] only the ea s i e s t  k i n e t i c  regime is  considered when the r a t e  of growth does 
not depend on the s ize  of a c r y s t a l .  In the present  ( for  determinateness we consider c r y s t a l -  
l i z a t i o n  from supersaturated solutions) the results of [8] are generalized for nonkinetic 
mechanisms of crystal growth of the following types: 

~ =  1.._~( C--Co ) 
r Co ' ( 1 )  

V = ~0 (c - -  Co)_, ( 2 )  
1 + ~ r  

representing respectively a diffusive regime [9] and a mechanism of crystal growth limited 
by successive processes of diffusion and a surface deposition reaction of the first order 
[10]. 

In order to describe mass crystallization we use the kinetic equation of the evolution 
of a polydisperse ensemble of crystals in a suspension with the boundary condition in the 
form of the equality between the effective flow of crystals of minimal size and the fre- 
quency of the nucleus formation J and the equation of mass balance for the crystallizing 
matter taking account of the continuous supply of the supersaturated solution and the ab- 
sorption of supersaturation by growing crystals 
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=-- Q - -  p --2-ztr3 f (t, r) dr. (4)  
C o r ,  

Equations (3) and (4) are w r i t t e n  on the assumption tha t  the supersatura t ion and the funct ion  
of d i s t r i b u t i o n  of c r y s t a l s  w i th  s izes in the volume of the system are homogeneous; t h i s  
corresponds to the hypothesis on idea l  mixing w i th  the phys ica l  c h a r a c t e r i s t i c s  being con- 
s tan t .  The removal of c r y s t a l s  in Eq. (3) is  described wi th  the help of the balance re l a -  
t i on  according to which the number of c r y s t a l s  leaving u n i t  volume of the mixture per u n i t  
of t ime is  assumed to be p ropo r t i ona l  to t h e i r  concentrat ion wi th  the constant p ropor t ion -  
a l i t y  coefficient X- 

We introduce new variables (for determinateness we consider regime of crystal growth 
(I), calculations corresponding to condition (2) are similar): 

t 

= r, f=q~r, u = - - ,  
\ ,6, : Co 

where ~s = ~(Us), where u s is the relative supersaturation corresponding to a stationary pro- 
cess. Then Eq. (3) assumes the form 

Assuming in (5) 

0%- Do = o :  ' 

( ' l /q~--s 0q~ _-= J 
Do , Os  s = ~ ,  Do~ 

Y f p,dz ,p(@, s)---- ~D (0, s)exp (~-- ~ ['/ 
Do~ [u (z)] 

we obtain for the function r s) the following equation (assuming s, z 0): 

OcD 1 0 ( D  ( 1 ) 02(D 
o - - ~ +  2 = s as Do Os 2 ' 

1 --I  q)--s = exp . . 
Do ~ss Do~ Do~-~z)] 

(5)  

(6)  

(7) 

Applying to (7) the Laplace transform in the variable 0 and letting r 
responds to the developed asymptotic stage of the process when the effect of the initial 
conditions ultimately vanishes, we obtain 

d2fl~p~_ l d ( D ~ ( 2 _  l ) 
e :  s D ;  - p * "  --  o, 

Do - - s  ds Do~[u (z)l 
The solution of Eq. (8) is 

= r (v + 1) 2" exp 

1 ( 1 _ 1  / , 
v=--~-  Do , 

~sdz 
Dol~[u (Z)] }).' 

s) = 0, which cor- 

(8)  

(9)  

where K~ and F are the Macdonald function and the Euler gamma-function respectively. Applying 
in (9) the inverse Laplace transform in p and taking account of Eq. (6), we obtain 

s 2v b~ J[u(O--T)] exp{_.eje ~sdz 
= 2 .4*r  (7, -]- 1) D O ~ 1. (O - -  ~)] C +1 _~ Do[~ [u (z)] 
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Fig. i. Characteristics of neutral stability: a) neutral stability 
curves in the plane of parameters R and G'; b) oscillation period 
on the neutral stability curve, P = 0, d = i; solid curve, D o = 0 
(result of [4]), dashed line, D o = 0.01, dashed-dotted curve, D o = 
0.05. 

By using (i0) in (4) we obtain a functional integrodifferential equation describing 
the evolution of the relative supersaturation 

(u) du Q (u) 
~s dO coy 

2~p~ ~ xa/2F(v+l,5)~ ~ J[u(O--t)] exp 
covDo ( - - ~ - )  r ( v + l )  o fi [u (O - -  t)] _ Do[5 [u (z)l 

For 7t >> i (and this condition is characteristic for many real processes of crystalliza- 
tion in ideal mixing apparatus) with accuracy up to an exponentially small error the upper 
limit in the integral term in (ii) can approach infinity. In this case Eq. (ii) admits 
a stationary solution corresponding to crystallization with the constant nucleation rate 

( i 3/2 + 1,5)r(1,5) 
y 1 r (v  +1)  

The surface of neutral stability of the stationary regime (12) obtained by standard 
methods of the linear theory of stability is defined by the equation 

iOo -t- Rd - -  P - t -(G; - -  Rd) (1%- i%Do) -3 /2  4- iRd [(1+ i % D o ) - a / 2 -  II = 0 ,  
' (,)oDo 

in which the followingparameters are introduced: 

(11) 

(12) 

R Q (u~_______) p = R u  8 d In Q , d = u~ dSlln,~ I , 

Co~U 8 ' du u=% ' du lu=% (13) 

G' n d l n J I  
KUs - - /  �9 

du ~="s 

In Fig. la, the trace of the surface of neutral stability G' 0 = S(R, P, d, D 0) is shown in 
the plane of the parameters G' and R. The condition G' > S(R, P, d, D o ) corresponds to 
the region of instability. The instability is oscillating in nature (Fig. ib) and sets 
in only when the slope of the ascending branch of the function J(u) is sufficiently sharp. 
With increase in the pulsating component of the crystal growth rate, i.e., with increase 
in the paremeter Do, the instability region narrows, and the frequency of oscillations on 
the surface of neutral stability decreases. 

Weakly nonlinear self-oscillating regimes, branching from stationary regimes when pass- 
ing over the surface of neutral stability to the region of instability, were investigated 
by methods described in detail in [2, 4]. The results of calculation of the square of the 
amplitude of the fundamental harmonic and the frequency of self-oscillations with rspect 
to supersaturation 

i 

G - - G o  7 , n  G' --  Go zI (R, P, d, Do); o ) - - % =  P, d, Do) 

for the power-type'~inetics of Mayer nucleation J = Cun are given in Fig. 2. It is not 
difficult to see that throughout the whole region of parameters of the system q > 0, i.e., 
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Fig. 2. Dependence of the square of the amplitude of oscillations 
(a) and frequency shift (b) on the parameter R and supercriticality 
G'/G' 0 - 1 for the power-type kinetics of nucleation J = Cu n, P = 0, 
d = i, solid curve, D O = 0, dashed, D o = 0.01, dashed-dotted, D O = 
0.05. 

instability is excited weakly. The amplitude of the oscillations increases with penetra- 
tion into the region of instability, while the frequency decreases. Fluctuations of the 
rate of growth of crystals result in decreasing the amplitude and increasing the frequency 
of self-oscillations. 

NOTATION 

C, n, constants of the power-type Mayer nucleation kinetics; c, concentration of the 
dissolved matter; Co, concentration at thermodynamic equilibrium; D, coefficient of pulsa- 
tions in the crystal growth rate; Do, kinetic coefficient introduced in (3); d, parameter 
introduced in (13); f(t, r), crystal size distribution function; G', parameter in (13); 
G' 0, magnitude of G' on the neutral stability surface; J, nucleation frequency; K, Mac- 
donald function; P, parameter introduced in (13); p, Laplace transform variable; Q, mass 
flow; R, parameter introduced in (13); r, r*, crystal radius and critical crystal radius; 
s, dimensionless crystal radius; t, time; u, dimensionless supersaturation; ~, kinetic coef- 
ficient introduced in (2); 6, 60, kinetic function and the coefficient introduced in (I), 
(2); ~, rate of removal of crystals from system; F, Euler gamma-function; O, dimensionless 
time; O, parameter introduced in (9); r Gaussian white noise of unit power, p, crystal 
density; 4, function introduced in (6); ~, averaged crystal growth rate; ~, m0, oscilla- 
tion frequency and its value on the neutral stability surface; index s refers to quanti- 
ties corresponding to the stationary crystallization process. 
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